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Abstract: - In microstructural parameters, the particle volume fraction and the average size of particles are 

important factors which determine the mechanical properties of materials. While, studies of three-

dimensional microstructure-property relationships are still less. In this research, for two-phase materials, 

we have calculated elastic-plastic micromechanical responses of the particle volume fraction and the average 

size of particles using a commercial software package, as a basic study of three-dimensional microstructure-

property relationships, in which the 3-D FEM is used. Although the grain sizes and the grain shapes of the 

actual materials are non-uniform, we use a simple virtual material model with particles of uniform size and 

shape to investigate the influence of the average size of the particles. In order to investigate the elastic-plastic 

micromechanical response of the particle volume fraction, two kinds of the particle volume fraction are used. 

By analyzing the calculated results of Von Mises stress, the equivalent plastic strain, and the curve of average 

tensile stress – tensile rate, some new knowledges on three-dimensional microstructure-property relationships 

have obtained. The advantage of using the 3-D FEM is that it is possible to study the three-dimensional 
microstructure-property relationships by easily and inexpensively changing various microstructural 

parameters (not only the particle volume fraction and the average size of particles). 

 

Key-Words: - FEM, Microstructure-property relationships, Microstructural parameters, Particle volume fraction, 

Average size of particles, Elastic-plasticity 

 

1 Introduction 
It is well known that the properties of materials are a 

function of their microstructural parameters such as 

the particle volume fraction, the contiguity of 

particles, and the average size of particles, etc. The 

microstructural parameters are obtained from 

materials characterization that is usually based on 

data obtained from two-dimensional plane sections 

for most crystalline materials. However, many 

effects of the microstructural units on the properties 

of materials are three-dimensional, because most 

materials have a polycrystalline or multi-phase 

structure with significant complexity in the spatial 

arrangement of their microstructural units. 

Therefore, it is necessary to use the microstructural 

parameters indicated by three-dimensional 

microstructural units and to estimate three-

dimensional microstructural features of materials 

directly. The serial-sectioning methods [1, 2, 3]  can 

be used for this purpose. While this approach is hard 

to be implemented, for example, it gives actual data 

on various microstructural parameters, but in order 

to use them as inputs for property studies of 

materials with three-dimensional microstructural 

units, one must re-construct many samples of 

materials. The numerical method is a good selection 

for studies of three-dimensional microstructure-

property relationships. The fast Fourier transform-

based method has been used in numerical modelling 

of three-dimensional microstructure-property 

relationships [4, 5, 6]. But, the fast Fourier 

transform-based method has some demerits, such as 

the lack of a conformal representation of grain 

boundaries. The crystal-plasticity finite-element 
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method (CP-FEM) has been shown to be capable of 

describing metal forming problems, (for example, [7, 

8]). While, to perform a CP-FEM analysis, many 

material parameters have to be empirically 

determined, so that deviations of these parameters 

may cause errors in the CP-FEM analysis. 

The finite element method (FEM) is a powerful 

method in numerical methods especially for 

simulations of three-dimensional problems (for 

example, [9, 10]). One can conveniently make 

various kinds of elements using commercial 

software packages to capture the real 

microstructural complexities of materials. The 

elements of micro-scale and three-dimension have 

to be used in order to indicate microstructural units, 

and a large number of elements are necessary. 

Therefore, the pre-processing for the numerical 

calculation is very troublesome. It is a challenge, but 

it can be achieved when using commercial software 

packages of the FEM. In fact, such a challenge 

exists in all the numerical methods. That there are 

commercial software packages of the FEM instead 

of other numerical methods is a key which can meet 

such a challenge. While, studies of three-

dimensional microstructure-property relationships 

using the FEM are still less. In microstructural 

parameters, the particle volume fraction (PVF) and 

the average size of particles are important factors 

which determine the mechanical properties of 

materials. In this research, we would calculate 

elastic-plastic micromechanical responses of the 

particle volume fraction and the average size of 

particles for two-phase materials using a 

commercial software package called MARC Mentat, 

as a basic study of three-dimensional 

microstructure-property relationships, in which the 

3-D FEM is used. 

 

 

2 The Object and Method of 

Calculation 
In the actual materials, the particle distribution is 

typically random. For the micromechanical 

modeling of the materials, one may choose a 

representative volume element (RVE) to describe 

the microstructural features of materials and then to 

numerically obtain the overall mechanical behaviors 

of the materials. In this work, as the RVE for 

modelling, a cube of 1×1×1 is calculated, and the 

domain coordinates of the cube are taken as (0, 0, 0)

×(1, 1, 1). Although the unit of the cube’s size is 

not given, a unit with grain level is considered and 

used in this work. The tensile boundary condition, 

that z direction’s displacements of nodes located at 

surface of z=1 are +0.2 (20% tensile rate), is 

imposed. The constraint boundary conditions, that x 

direction’s displacements of nodes located at surface 

of x=0 are 0, that y direction’s displacements of 

nodes located at surface of y=0 are 0, and that z 

direction’s displacements of nodes located at surface 

of z=0 are 0, are also imposed. 

It is well known that the average grain size of 

the crystalline material generally plays a very 

significant role. Thus, the strength of all 

polycrystalline materials is related to the grain size, 

d, through the Hall–Petch equation which states that 

the yield stress, 𝜎𝑦 is given by 

 

𝜎𝑦 = 𝜎0 + 𝑘𝑦𝑑
−
1

2                                                   (1) 

where 𝜎0 is termed the friction stress and 𝑘𝑦 is a 

constant of yielding [11, 12]. Although the grain 

sizes and the grain shapes of the actual materials are 

 

Fig. 1. The model of 8000 elements. 

 

Fig. 2. The model of 27000 elements. 
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non-uniform, in this paper we use a simple virtual 

material model with particles of uniform size and 

shape to investigate the influence of the average size 

of the particles. In order to investigate the elastic-

plastic micromechanical response of the average 

size of particles, two FE models are used, in which 

the cube is divided into 8000 (average volume of 

particles is 1/8000) (Fig. 1) and 27000 (average 

volume of particles is 1/27000) (Fig. 2) hexahedral 

elements, respectively. 

In order to investigate the elastic-plastic 

micromechanical response of the PVF of two-phase 

materials, in this study two kinds of the PVF of hard 

phase, which are 10% and 20%, respectively, are 

used, for the two FE models. The locations of 

elements of hard phase are randomly selected in 

inside and at the surface of the cube. For example, 

the distribution of PVF 20% of hard phase for 

27000 elements model is shown in Fig. 3. 

 

 

(a) Outside view 

 

(b) Sectional view 

Fig. 3. The distribution of PVF 20% of hard            

    phase for 27000 elements model. 

 

The Young's modulus E and Poisson's ratio ν for 

the elastic FE calculation are shown in Table 1, and 

the flow-stress equations for the plastic FE 

calculation are shown in Table 2, where �̅� is Von 

Mises equivalent stress and 𝜀 ̅is the equivalent strain. 

 

Table 1. The Young's modulus E and Poisson's ratio 

ν for the elastic FE calculation 

 

Soft_phase E=80 GPa ν=0.3 

Hard_phase E=150 GPa ν=0.3 

 

Table 2. The flow-stress equations for the plastic FE 

calculation 

 

Soft_phase 

 

=240  MPa 

 

Hard_phase 

 

=900  MPa 

 

 

3 The Results of Calculation 
 

 

3.1 The Von Mises Stress 
For the case of the PVF 10% of hard phase using 

8000 elements, the distribution of Von Mises 

stresses at 0.4% tensile rate is shown as Fig. 4, and 

the distribution of Von Mises stresses at 20% tensile 

rate is shown as Fig. 5. As expected, it can be seen 

from these figures that the maximum value and 

average value of Von Mises stresses at 20% tensile 

rate are larger than those values at 0.4% tensile rate, 

respectively. 

 

 
 

Fig. 4. Von Mises stresses (Pa) of the PVF 10%  for   

  0.4% tensile rate using 8000 elements. 
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Fig. 5. Von Mises stresses (Pa) of the PVF 10%  for 

20% tensile rate using 8000 elements. 

 

For the case of the PVF 20% of hard phase using 

8000 elements, the distribution of Von Mises 

stresses at 0.4% tensile rate (using 8000 elements) is 

shown as Fig. 6, and the distribution of Von Mises 

stresses at 20% tensile rate (using 8000 elements) is 

shown as Fig. 7. As expected, it can be seen from 

these figures, that for the model of PVF 20% of hard 

phase, the maximum (or average) value of Von 

Mises stress at 20% tensile rate is larger than the 

value at 0.4% tensile rate. In addition, many oblique 

large stress bands are clearly seen form the both 

figures. 

 

 
 

Fig. 6. Von Mises stresses (Pa) of the PVF 20% for  

  0.4% tensile rate using 8000 elements. 

 

For the case of the PVF 10% of hard phase using 

27000 elements, the distribution of Von Mises 

stresses at 0.4% tensile rate is shown as Fig. 8, and 

the distribution of Von Mises stresses at 20% tensile 

rate is shown as Fig. 9. It is similar to that of the 

8000 element model, it can be seen from these 

figures, for the model of PVF 10% of hard phase 

using 27000 elements, that at 20% tensile rate, the 

 
 

Fig. 7. Von Mises stresses (Pa) of the PVF 20% for   

 20% tensile rate using 8000 elements. 

 

maximum (or average) value of Von Mises stress is 

larger than the value at 0.4% tensile rate. In addition, 

many oblique large stress bands are clearly seen 

 

 
 

Fig. 8. Von Mises stresses (Pa) of the PVF 10% for  

    0.4% tensile rate using 27000 elements. 

 

 
 

Fig. 9. Von Mises stresses (Pa) of the PVF 10% for   

   20% tensile rate using 27000 elements. 
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from the both figures for the model of PVF 10% of 

hard phase, too. Moreover, it can be seen from Fig. 

4, Fig. 5, Fig. 8, and Fig. 9, that for the PVF 10% of 

hard phase, the distribution and magnitudes of Von 

Mises stresses using 27000 elements are difference 

from those using 8000 elements. 

For the case of the PVF 20% of hard phase using 

27000 elements, the distribution of Von Mises 

stresses at 0.4% tensile rate is shown as Fig. 10, and 

the distribution of Von Mises stresses at 20% tensile 

rate is shown as Fig. 11. It can be also seen from 

these figures, it is similar to the case using 8000 

element model, that, for the model of PVF 20% of 

hard phase, the maximum (or average) value of Von 

Mises stresses at 20% tensile rate is larger than the 

value at 0.4% tensile rate. Many oblique large stress 

bands are clearly seen. Moreover, it can be seen 

from Fig. 6, Fig. 7, Fig. 10, and Fig. 11, that, for the 

PVF 20% of hard phase, the distribution and 

magnitudes of Von Mises stresses using 27000 

 

 
 

Fig. 10. Von Mises stresses (Pa) of the PVF 20% for  

      0.4% tensile rate using 27000 elements. 

 

 
 

Fig. 11. Von Mises stresses (Pa) of the PVF 20% for  

     20% tensile rate using 27000 elements. 

elements are difference from those using 8000 

elements. 

 

 

3.2 The Equivalent Plastic Strain 
For the case at 1% tensile rate using 8000 elements, 

the distribution of equivalent plastic strains of the 

PVF 10% of hard phase is shown as Fig. 12, and the 

distribution of equivalent plastic strains of the PVF 

20% of hard phase is shown as Fig. 13. It can be 

seen from these figures, that the maximum (or 

average) value of equivalent plastic strains of the 

PVF 20% of hard phase is larger than the value of 

the PVF 10% of hard phase. In addition, as expected, 

many oblique large equivalent plastic strains bands 

are clearly seen form the both figures. 

 

 
 

Fig. 12. Equivalent plastic strains of the PVF 10%  

          for 1% tensile rate using 8000 elements. 

 

 
 

Fig. 13. Equivalent plastic strains of the PVF 20%  

          for 1% tensile rate using 8000 elements. 

 

For the case at 1% tensile rate using 27000 

elements, the distribution of equivalent plastic 

strains of the PVF 10% of hard phase is shown as 

Fig. 14, the distribution of equivalent plastic strains 
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of the PVF 20% of hard phase is shown as Fig. 15. 

It can be seen from these figures that the maximum  

(or average) value of equivalent plastic strains of the 

PVF 20% of hard phase is larger than the value of 

the PVF 10% of hard phase. In addition, as expected, 

many oblique large equivalent plastic strains bands 

are clearly seen form the both figures. Moreover, it 

can be seen from Fig. 12, Fig. 13, Fig. 14, and Fig. 

15, that the distribution and magnitudes of 

equivalent plastic strains using 27000 elements are 

difference from those using 8000 elements, at 1% 

tensile rate. 

 

 
 

Fig. 14. Equivalent plastic strains of the PVF 10%  

            for 1% tensile rate using 27000 elements. 

 

 
 

Fig. 15. Equivalent plastic strains of the PVF 20%  

            for 1% tensile rate using 27000 elements. 

 

For the case at 20% tensile rate using 27000 

elements, the distribution of equivalent plastic 

strains of the PVF 10% of hard phase is shown as 

Fig. 16, and the distribution of equivalent plastic 

strains of the PVF 20% of hard phase is shown as 

Fig. 17. It can be seen from these figures that the 

maximum value of equivalent plastic strains of the 

PVF 20% of hard phase is larger than that of the 

PVF 10% of hard phase. In addition, as expected, 

many oblique large equivalent plastic strains bands 

are clearly seen form the both figures, too. 

 

 

3.3 The Curve of Average Tensile Stress –  

Tensile Rate 
The curves of z direction’s average tensile stress – 

tensile rate of the cube using 8000 elements are 

shown as Fig. 18, and the curves of z direction’s 

average tensile stress – tensile rate of the cube using 

27000 elements are shown as Fig. 19, where s is the 

z direction’s average tensile stress and e is the 

tensile rate. As expected, it can be seen from these 

figures that the z direction’s average tensile stresses 

of the cube increase along with the increase of the 

PVF for both element models. In addition, it can be 

seen from these figures that the work hardening 

increases along with the increase of the PVF for 

 

 
 

(a) Outside view 

 

 
 

(b) Sectional view 

 

Fig. 16. Equivalent plastic strains of the PVF 10%  

              for 20% tensile rate using 27000 elements. 
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(a) Outside view 

 

 
 

(b) Sectional view 

 

Fig. 17. Equivalent plastic strains of the PVF 20%  

              for 20% tensile rate using 27000 elements. 

 

both element models. Moreover, it can be seen from 

Fig. 18 and Fig. 19, that the values of z direction’s 

average tensile stress of both PVFs using 27000 

elements are larger than those of both PVFs using 

8000 elements, respectively. 

 

 

4 Conclusion 
In this research, we have calculated elastic-plastic 

micromechanical response of the particle volume 

fraction and the average size of particles of two-

phase materials using a commercial software 

package. It may be said that the commercial 

software package of the FEM is an effective and 

powerful tool for calculating elastic-plastic 

micromechanical response of the particle volume 

fraction and the average size of particles, and some 

new knowledges on three-dimensional 

microstructure-property relationships have obtained 

by simulating using the 3-D FEM. The direction for 

 
 

Fig. 18. The curves of s – e using 8000 elements. 

 

 
 

Fig. 19. The curves of s – e using 27000 elements. 

 

future research is investigating the influence of 

particles with non-uniform size and shape which are 

near to the actual materials. 
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